A 1 a 2 a 3 a 3 a 2 a 1 * * * * a 1 a 2 a 3 a 3 a 2 a 1
ثبت نشده
چکیده
Figure 12: Example of interactions between equality constraints in a horizontal window. the window. The rst row of Figure 12 gives the values of n. The second row shows the equality constraints due to the symmetry of the corner and to the periodicity. The third row, nally, gives the equality constraints due to the symmetry of the image corner. It is clear form the second row that, for example, w h 0] = w h 5], but, from the third row we can see that w h 5] = w h 4] and this imply also w h 0] = w h 4] and from the second row it follows w h 4] = w h 1] that implies w h 0] = w h 1] = w h 4] = w h 5] and so on. It is clear that it is very diicult to give the equality constraints in a closed form that depends on N x , x and x. However, there exists a simple algorithm to compute them. Indeed, we want to know, for each couple of integer n 1 , n 2 between 0 and N x , if there is a chain of integers m 0 ; m 1 ; : : :; m ` , such that w h n 1 ] = w h m 0 ] = = w h m ` ] = w h n 1 ], where each equality descends directly from the symmetry constraints of the corner or of the image corner. This is the problem of nding the transitive closure of the relation \a and b are such that w h a] = w h b] because of the corner or the image corner symmetry" 9]. The easiest way to compute the transitive closure of a relation between M elements is to construct an M M matrix R, such that R ij = 1 if and only if the element i and the element j are in such relation and zero otherwise. (74) where the product and the sum used in (74) are, respectively, the boolean AND and the boolean OR. Expression (74) can be slow to compute (although it is not too slow for windows of normal size and current computers) and a more eecient algorithm exists, see 10].
منابع مشابه
Enhanced Symplectic Synchronization between Two Different Complex Chaotic Systems with Uncertain Parameters
and Applied Analysis 3 Equation (8) can be expressed as ̇ e 1 = − 2y 1 x 1 [a (x 2 − x 1 ) + x 4 ] − (1 + x 2 1 ) × [a 1 (y 2 − y 1 ) + y 4 ] − u 1 + 3x 2 4 (rx 4 + x 2 x 3 ) , ̇ e 2 = − 2y 2 x 2 (dx 1 + cx 2 − x 1 x 3 ) − (1 + x 2 2 ) × (b 1 y 1 − y 2 − y 1 y 3 ) − u 2 + 3x 2 1 [a (x 2 − x 1 ) + x 4 ] , ̇ e 3 = − 2y 3 x 3 (−bx 3 + x 1 x 2 ) − (1 + x 2 3 ) × (−c 1 y 3 + y 1 y 2 ) − u 3 + 3x 2 2 (d...
متن کاملBiostratigraphic and Geological Significance of Planktonic Foraminifera
Jurassic Favusellidae 1 2 3 a b 1 2 a b 3 a 1 b 2 3 1 2 1 1 1 2 3 2 2 3 2 4 1 3 4 a b 1 2 3 1 2 1 2 a b b a a b b a b a Praehedbergellidae Hedbergellidae a b 3 b a a b
متن کاملEin Modell zum begründungsbasierten Freigabemanagement
.;3+?',#! K,;M#<+-! ;3+#%! 3'$/! '-! -;3+?',#! -J-+#C-! ',#! <;CK/#_! '%1! <*'%)#! 3,#b2#%+/J@! D;! K#,3;,C! K,;M#<+-! ?$+*! <*'%)#-! -2<<#--32//J9! ')$/#! /$3#! <J</#! C;1#/-!K,;K;-#!-*;,+!,#/#'-#!<J</#-9!;3+#%!/'-+$%)!;%/J!3#?!?##(-@!F*#,#'-! ,#/#'-#!C'%')#C#%+!*'-!3;<2-#1!;%!+*#!1#/$5#,J!;3!+*#!-J-+#C!'+!+*#!#%1!;3!'! K,;M#<+!2K!+;!%;?9!%;?!$+! $-! +2,%$%)! $%!'!K,;M#<+! 32%<+$;%!'<<;CK'%J$%...
متن کاملEquity in scaling up SimCalc: investigating differences in student learning and classroom implementation
Investigating Differences in Student Learning and Classroom Implementation ! "#$#%&!'()*+#,,#-!.'/!/01#$0213(02,-!4#$#%&5$()*+#,,#6)$35*(%! "#))3*2!73#$)(0-!.20!83#9(!.121#!:03;#$)31&-!4<3#$)(06%23,5)=)>5#=>! .>)20!?%<)(0-!:03;#$)31&!(@!A#B2)!21!C>)130-!#%<)(06%23,5>1#B2)5#=>! D3*(,#!.+#*+1%20-!.'/!/01#$0213(02,-!03*(,#5)+#*+1%206)$35*(%! E2$93#!8>00-!'>19#$)!:03;#$)31&-!D#F2$G-!=>006*)5$>19#$)...
متن کاملRadiological Aspects of Genetic Disorders with Adult-onset CNS Symptoms.
!"!#$%& '$()*'!*(& +,,!%#$"-& #.!& %!"#*+/& "!*0)1(& (2(#!3& .+0!& +& 4$'!& +-!& *+"-!& *!-+*'$"-& )"(!#& ),& (235#)3(6&7& (5!%$,$%&'$(!+(!& !"#$#2&3+2&.+0!& %.$/'.))'&)"(!#& )*&+'1/#& )"(!#& ,)*3(8&4.!*!+(&)#.!*& '$(!+(!&!"#$#$!(&3+2&)"/2&2$!/'&(235#)3(&$"&+'1/#.))'6&9235#)3(&3+2&:!&"!1*)/)-$%+/&)*&5(2%.$+#*$%& $"%/1'$"-&!+*/2&'!3!"#$+6&;#&$(&$35)*#+"#&#)&*!%)-"$<!&(1%.&'$(!+(!(&:!%+1(!&#.!&%)...
متن کاملCorrigendum: Thermal invisibility based on scattering cancellation and mantle cloaking
In the Results section under subheading 'Scattering cancellation technique for heat diffusion waves: static regime' " For → ∞ r , κ θ (>) = − (/) T r a Q rcos 2 0 , therefore κ = − / E Q 1 0 and all the other coefficients ≠ E l 1 are zero. " should read: " For → ∞ r , κ θ (>) = − (/) T r a Q rcos 2 0 with κ = − (−)/ Q T T L 0 2 1 the heat generated by unit surface and unit time, in contrast...
متن کامل